A Crash Course on Linear Programs : Part 2¹

- *The Dual Linear Program.* For every linear program there is another linear program which lives in a completely different space but has the same value! In approximation algorithms, the dual is often used to *design and analyze* "self-contained" algorithms for problems. By this, I mean algorithms which do not resort to solving LPs. In this note we brush up on the definitions.
- We begin with minimization programs on *n* variable. For convenience's sake, we will differentiate constraints as "non-trivial" inequalities and "non-negativity" constraints.

$$\begin{aligned} \mathsf{lp} &:= \text{minimize} \quad \mathbf{c}^{\top} \mathbf{x} = \sum_{j=1}^{n} c_{j} x_{j} & \text{(Linear Program)} \\ & A \mathbf{x} \geq \mathbf{b}, & A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m} \\ & \mathbf{x} \in \mathbb{R}_{>0}^{n} \end{aligned}$$

• **The Lagrangean.** The dual, which is not restricted to just linear programs but *any* program, starts with what is called the Lagrangean function named after the Italian-French mathematician Joseph-Louis Lagrange (aka Giuseppe Luis Lagrangia). The main idea of this is to "move all the constraints to the objective". Instead of moving all, we move the non-trivial ones. Let us introduce variables (called Lagrange/dual variables) y_i for each of the *m* constraints/rows of the matrix *A*. Given this *m*-dimensional variable vector y, define

$$\mathcal{L}(\mathbf{y}) := \min_{\mathbf{x} \in \mathbb{R}^{n}_{\geq 0}} \left(\mathbf{c}^{\top} \mathbf{x} + \underbrace{\mathbf{y}^{\top} (\mathbf{b} - A\mathbf{x})}_{=\sum_{i=1}^{m} \mathbf{y}_{i} \cdot (\mathbf{b}_{i} - \mathbf{a}_{i}^{\top} \mathbf{x})} \right)$$
(Lagrangean)

One way to think about the above function is the following. For the time being assume $\mathbf{y}_i \ge 0$ and think of it as a rate at which we "penalize" \mathbf{x} if it \mathbf{x} doesn't satisfy the *i*th inequality, that is, $\mathbf{b}_i > \mathbf{a}_i^\top \mathbf{x}$. In that case, we multiply this "violation" by \mathbf{y}_i and add it to the function. Since \mathbf{x} is trying to "minimize" the term in the paranthesis, the \mathbf{y} 's perhaps nudge the \mathbf{x} to becoming more feasible. The last line is really figurative and shouldn't be given much attention.

However, a few facts are to be observed.

Fact 1. Suppose \mathbf{x} be any feasible solution to (Linear Program). Then, for any $\mathbf{y} \in \mathbb{R}_{\geq 0}^m$, we have $\mathcal{L}(\mathbf{y}) \leq \mathbf{c}^\top \mathbf{x}$. In particular, this is true if we take the optimal solution \mathbf{x}^* , and if we take the \mathbf{y} which maximizes $\mathcal{L}(\mathbf{y})$. Therefore,

$$\max_{\mathbf{y}\in\mathbb{R}^m_{\geq 0}}\mathcal{L}(\mathbf{y}) \leq \mathsf{Ip} \tag{1}$$

¹Lecture notes by Deeparnab Chakrabarty. Last modified : 18th Mar, 2022

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

Proof. Because for a feasible \mathbf{x} for (Linear Program), we have $(\mathbf{b} - A\mathbf{x}) \leq \mathbf{0}$ and thus $\mathbf{y}^{\top}(\mathbf{b} - A\mathbf{x}) \leq \mathbf{0}$ if $\mathbf{y} \geq \mathbf{0}$. Which in turn means $\mathcal{L}(\mathbf{y}) \leq \mathbf{c}^{\top}\mathbf{x}$.

Fact 2. One can re-write (Lagrangean) as

$$\mathcal{L}(\mathbf{y}) = \begin{cases} \mathbf{y}^\top \mathbf{b} & \text{if } \mathbf{y}^\top A \leq \mathbf{c}^\top \\ -\infty & \text{otherwise} \end{cases}$$

Proof. Rearranging gives us $\mathcal{L}(\mathbf{y}) = \mathbf{y}^{\top}\mathbf{b} + \min_{\mathbf{x}\geq 0} (\mathbf{c}^{\top} - \mathbf{y}^{\top}A) \mathbf{x}$. If $(\mathbf{c}^{\top} - \mathbf{y}^{\top}A)$ has any coordinate *i* negative, then one would choose \mathbf{x}_i to be as large a positive number and $\mathbf{x}_j = 0$ for all other coordinates to make the minimum be as negative a number as one wants.

• *The Dual LP and Weak Duality.* The above two facts imply the following: one, that the maximization of $\mathcal{L}(\mathbf{y})$ can be written as a linear program itself, and two, the value of this linear program is a *lower* bound on the LP value. This linear program is called the *Dual LP*.

$$\begin{aligned} \mathsf{dual} &:= \text{maximize} \quad \mathbf{b}^\top \mathbf{y} = \sum_{i=1}^m b_i y_i & \text{(Dual Program)} \\ & A^\top \mathbf{y} \leq \mathbf{c}, \\ & \mathbf{y} \in \mathbb{R}^m_{\geq 0} \\ & \text{dual} \leq \mathsf{lp} & \text{(Weak Duality)} \end{aligned}$$

A couple of remarks about the dual. One, the dual is a maximization LP while the original LP, which is called the primal LP, was a minimization one. Therefore the dual value of any feasible dual solution is a lower bound on the value of the primal LP; this is a very important fact that will be used in algorithm design and analysis. Second, for every variable x_j in the primal there is a constraint in the dual, and for every constraint in the primal there is a variable y_i in the dual. Writing the dual LP is a completely mechanical process, but experience tells me it takes some time getting used to; the inexperienced reader is urged to look at the following illustrations and then try taking duals of every LP they see (in particular, take dual of the dual).

• *Two Illustrations.* Consider the following LP on n = 3 variables having m = 2 constraints apart from the non-negativity constraints.

$$lp := minimize \quad 2x_1 + 3x_2 - x_3$$
 (Illus-primal)

$$x_1 + x_2 - x_3 \ge 3,$$
 (P1)

$$x_3 - 2x_1 \ge 0,\tag{P2}$$

$$x_1, x_2, x_3 \ge 0$$

Before reading further, can you see any simple *lower bound* on lp? To me, I can see that the LP objective is at least $x_1 + x_2 - x_3$ which is at least 3 by (P1). Therefore, surely lp ≥ 3 . Anything larger doesn't immediately leap to the eye (the adverb "immediately" is important). Ok, let's take the dual now.

In the dual LP, we have *two* variables, let's call them y_1 and y_2 corresponding to primal constraints (P1) and (P2). The objective of the dual LP is to maximize a linear combination of y_1 and y_2 , and the coefficients are simply the RHS of the corresponding primal constraints. Thus, it is $3y_1 + 0y_2 = 3y_1$.

There is a dual constraint for each primal variable; therefore, there will be three constraints. Let me show how to figure out the *dual* constraint on (y_1, y_2) corresponding to primal variable x_1 . We first figure out which primal constraints x_1 appears in; the corresponding dual variables will appear in the dual constraint. In this case, x_1 appears in both, and so both y_1 and y_2 will appear. Furthermore, the coefficient of y_1 will be the coefficient of x_1 in (P1), and similarly the coefficient of y_2 will be coefficient of x_1 in (P2). This forms the LHS of the dual constraint, which in this case is $y_1 - 2y_2$. The inequality of the constraint is \leq , and the RHS of the constraint is the coefficient of x_1 in the primal objective. And therefore, the dual constraint is $y_1 - 2y_2 \leq 1$. We can similarly write the dual constraints corresponding to x_2 and x_3 (do you want to try before reading ahead?) Finally, we add non-negativity constraints on y_1 and y_2 , and this finishes the dual. Pretty mechanical.

 $\mathsf{dual} := \text{maximize} \quad 3y_1 \tag{Illus-Dual}$

$$y_1 - 2y_2 \le 2,\tag{D1}$$

$$y_1 \le 3,\tag{D2}$$

$$y_2 - y_1 \le -1 \tag{D3}$$

$$y_1, y_2 \ge 0$$

First note that $y_1 = 3$ and $y_2 = 2$ is a feasible solution with dual = 9. And therefore, by (1), we also get that the optimum value lp of (Illus-primal) is at least 9 as well. Indeed, it is precisely 9 since $(x_1 = 0, x_2 = 3, x_3 = 0)$ achieves that value; but this was not immediate before the dual, right? Good. Let's move to a second and more abstract illustration.

Consider the LP relaxation for the vertex cover problem that we have seen before. Here it is.

$$\begin{aligned} \mathsf{lp}(G) &:= \text{minimize} \quad \sum_{v \in V} c(v) x_v & (\text{Vertex Cover LP}) \\ & x_u + x_v \geq 1, \qquad \forall (u,v) \in E \\ & x_v \geq 0, & \forall v \in V \end{aligned}$$

What is the dual of the above LP? Do you want to try writing it before peeking ahead? The dual has a variable y_e per edge of the graph (since the primal has a constraint per edge). The constraint is simply the sum of these y_e 's since the RHS of the primal constraints is 1. There is a dual constraint per vertex $v \in V$ since there is a primal variable for every $v \in V$. The constraint corresponding to v is a linear combination of all dual variables y_e such that the primal variable x_v appears in the *e*th constraint. In particular, it is the sum of all the y_e 's for e incident on v. The RHS of the constraint is c(v) since that is the coefficient of x_v in the primal LP. And finally, we have non-negativity constraints on y_e 's. Done.

$$\begin{aligned} \mathsf{dual}(G) &:= \text{maximize} \quad \sum_{e \in E} y_e & (\text{Vertex Cover Dual}) \\ & \sum_{e: v \in e} y_e \leq c(v), & \forall v \in V \\ & y_e \geq 0, & \forall e \in E \end{aligned}$$

• Strong Duality. Here is one of the most magical theorems out there.

Theorem 1 (Strong Duality). dual = lp

Proof. (Sketch) We provide a proof to give an idea of how such a theorem is proven. Indeed, we consider the special case of *non-degenerate* feasible regions. That is, the feasible region is full dimensional and every basic feasible solution \mathbf{x} has exactly *n* constraints holding with equality, and the rest hold with strict inequality. This assumption is not needed, but it gets to the essence of the proof.

Consider an optimal bfs \mathbf{x}^* (recall, such a solution always exists) and let B be the corresponding basis. So, $B\mathbf{x}^* = \mathbf{b}_B$, that is $\mathbf{a}_i^\top \mathbf{x}^* = \mathbf{b}_i$ for $i \in B$ (we abuse B to denote rows and the index of the rows), and the rows of B span \mathbb{R}^n . In particular, the cost vector \mathbf{c} can be uniquely written as a linear combination of the basis vectors; $\mathbf{c} = \sum_{i \in B} y_i \mathbf{a}_i$.

Now consider a candidate solution \mathbf{y} to (Dual Program with equalities) where $\mathbf{y}_i = y_i$ for $i \in B$ and $\mathbf{y}_j = 0$ for $j \notin B$. Observe (a) by definition $\mathbf{y}^\top A = \mathbf{c}^\top$, and (b) $\mathbf{c}^\top \mathbf{x}^* = \sum_{i \in B} y_i \mathbf{a}_i^\top \mathbf{x}^* = \sum_{i \in B} y_i \mathbf{b}_i$. It seems as if we have found a feasible solution \mathbf{y} to the dual LP whose objective equals $\mathbf{c}^\top \mathbf{x}^*$. Since we already have established weak-duality, this equality would prove theorem. The only nub is that we haven't establishes $\mathbf{y} \ge 0$; indeed, we have also not really used \mathbf{x}^* is the *optimal solution*. We do so next.

We claim that all the $y_i \ge 0$ which would complete the proof of the theorem. Suppose not, and say $y_1 < 0$. Consider a vector $\mathbf{v} \in \mathbb{R}^n$ in the *null space* of $B \setminus \{1\}$ such that $\mathbf{a}_1^\top \mathbf{v} > 0$ and $\mathbf{a}_i^\top \mathbf{v} = 0$ for $i \in B \setminus \{1\}$. This exists since \mathbf{a}_1 is linearly independent of $B \setminus \mathbf{a}_1$. Now choose $\theta > 0$ small enough such that $\mathbf{a}_j^\top(\theta \mathbf{v}) > \mathbf{b}_j$ for all $j \notin B$; this is where we are using the non-degeneracy assumption. By design, therefore, $\mathbf{x}' = \mathbf{x}^* + \theta \mathbf{v}$ is feasible. And, $\mathbf{c}^\top \mathbf{x}' - \mathbf{c}^\top \mathbf{x}^* = \theta \mathbf{c}^\top \mathbf{v}$. However,

$$\mathbf{c}^{\top}\mathbf{v} = y_1 \underbrace{\mathbf{a}_1^{\top}\mathbf{v}}_{>0} + \sum_{i=2}^m y_i \underbrace{\mathbf{a}_i^{\top}\mathbf{v}}_{=0} < 0$$

since $y_1 < 0$. This contradicts \mathbf{x}^* is the optimum solution, completing the proof of strong duality. \Box

• **Complementary Slackness.** A very interesting feature about the mirroring is captured by the following observation which, due to its importance, is given a name called *complementary slackness*. It says, a dual variable is *positive* in an optimal dual solution only if the corresponding *primal constraint* must be tight, that is hold with equality, in any optimal primal solution. Similarly, a primal variable is *positive* in an optimal solution only if the corresponding *dual constraint* is tight.

Lemma 1 (Complementary Slackness.). Let \mathbf{x}^* be *any* optimal solution of (Linear Program). Let \mathbf{y}^* be any optimal solution of (Dual Program with equalities). Then, $\mathbf{y}_j^* > 0 \Rightarrow \mathbf{a}_j^\top \mathbf{x} = \mathbf{b}_j$ and $\mathbf{x}_i^* > 0 \Rightarrow \mathbf{y}^\top \mathbf{A}_i = \mathbf{c}_i$. Her \mathbf{A}_i is the *i*th column of the matrix A.

Proof. For brevity's sake, let's call \mathbf{x}^* simply \mathbf{x} and \mathbf{y}^* simply \mathbf{y} . By Strong Duality, we know that $\mathbf{c}^\top \mathbf{x} = \mathbf{y}^\top \mathbf{b}$, since (\mathbf{x}, \mathbf{y}) are optimal solutions. We also know that $\mathbf{c}^\top \geq \mathbf{y}^\top A$. Therefore, since $\mathbf{x} \geq 0$, we get $\mathbf{c}^\top \mathbf{x} \geq (\mathbf{y}^\top A) \mathbf{x}$. And so,

$$\mathbf{y}^{\top}\mathbf{b} = \mathbf{c}^{\top}\mathbf{x} \ge (\mathbf{y}^{\top}A)\mathbf{x} \Rightarrow \mathbf{y}^{\top}\mathbf{b} \ge \mathbf{y}^{\top}(A\mathbf{x}) \Rightarrow \mathbf{y}^{\top}(A\mathbf{x}-\mathbf{b}) \le 0$$

On the other hand $A\mathbf{x} \ge \mathbf{b}$, or in other words if we define the *m*-dimensional vector $\mathbf{v} := A\mathbf{x} - \mathbf{b}$, $\mathbf{v}_j \ge 0$ for all $1 \le j \le m$. Thus, we get $\sum_{j=1}^m \mathbf{y}_j \mathbf{v}_j \le 0$ while $\mathbf{y}_j \ge 0$ and $\mathbf{v}_j \ge 0$.

There is only *one* possibility : we must have $\sum_{j=1}^{m} \mathbf{y}_j \mathbf{v}_j = 0$. And therefore, whenever $\mathbf{y}_j > 0$ we *must* have $\mathbf{v}_j = 0$, that is, $\mathbf{a}^\top j = \mathbf{b}_j$.

Since $\mathbf{y}^{\top} (A\mathbf{x} - \mathbf{b}) = 0$, we also get that $\mathbf{c}^{\top}\mathbf{x} = (\mathbf{y}^{\top}A)\mathbf{x}$. That is, $(c^{\top} - \mathbf{y}^{\top}A)\mathbf{x} = 0$. Again, if we define the *n*-dimensional vector $\mathbf{w} := \mathbf{c} - A^{\top}\mathbf{y}$, then we get $\mathbf{w}^{\top}\mathbf{x} = 0$ while both \mathbf{w} and \mathbf{x} are non-negative. This would mean that $\mathbf{x}_i > 0 \Rightarrow \mathbf{w}_i = 0$, that is, $\mathbf{y}^{\top}\mathbf{A}_i = \mathbf{c}_i$.

• *The Dual of a Maximization LP*. The same procedure using the Lagrangean function can be used to write the dual of a maximization LP as well. So, if the primal LP is

$$\begin{aligned} \mathsf{l}\mathsf{p} &:= \text{maximize} \quad \mathbf{c}^{\top}\mathbf{x} = \sum_{j=1}^{n} c_{j} x_{j} & (\text{Max Linear Program}) \\ & A\mathbf{x} \leq \mathbf{b}, & A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m} \\ & \mathbf{x} \in \mathbb{R}_{\geq 0}^{n} \end{aligned}$$

Then the dual LP also has variables $\mathbf{y} \in \mathbb{R}^m$ corresponding to the constraints in the primal. It is a *minimization* LP, and the constraints are of the " \geq " type. Weak duality asserts that the value of the dual is *at least* the value of the maximizing primal, and strong duality implies they are equal.

$$\begin{aligned} \mathsf{dual} := \min & \mathbf{b}^\top \mathbf{y} = \sum_{i=1}^m b_i y_i & \text{(Min Dual Program)} \\ & A^\top \mathbf{y} \ge \mathbf{c}, \\ & \mathbf{y} \in \mathbb{R}_{\ge 0}^m \end{aligned}$$

• *The Dual with Equality Constraints.* Sometimes the primal LP has equality constraints. In that case, the corresponding dual variables are "free"; that is, they don't have any non-negativity constraint and are allowed to be free. Once again, this is not hard to see if one treats the equality constraint as two sets of *inequality* constraints, and then writes the dual. In particular, if the primal LP is

 $\begin{aligned} \mathsf{lp} &:= \text{minimize} \quad \mathbf{c}^{\top} \mathbf{x} = \sum_{j=1}^{n} c_j x_j & \text{(Linear Program with Equalities)} \\ & A \mathbf{x} \geq \mathbf{b}, & A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \\ & P \mathbf{x} = \mathbf{q}, & P \in \mathbb{R}^{k \times n}, \mathbf{q} \in \mathbb{R}^k \\ & \mathbf{x} \in \mathbb{R}_{\geq 0}^n \end{aligned}$

then its dual has two sets of variables $\mathbf{y} \in \mathbb{R}^m$ corresponding to A and $\mathbf{z} \in \mathbb{R}^k$ corresponding to P. The program is

> dual := maximize $\mathbf{b}^{\top}\mathbf{y} + \mathbf{q}^{\top}\mathbf{z}$ (Dual Program with equalities) $A^{\top}\mathbf{y} + P^{\top}\mathbf{z} \leq \mathbf{c},$ $\mathbf{y} \in \mathbb{R}_{\geq 0}^{m}, \mathbf{z} \in \mathbb{R}^{k}$

Note that \mathbf{z} has no non-negativity constraints.

Notes

Since this is not a course on linear programming, my notes will be short because the alternative is to be extremely long. All I will say is that everyone who studies linear programming has a favorite source which enlightened them. For me it was this beautiful text [1] by Bertsimas and Tsitsiklis.

References

[1] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena-Scientific, 1997.